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Abstract

This paper extends the earlier work of various researchers and the authors and gives an analytical solution to the natural

frequencies and mode shapes of the space shuttle remote manipulator system (SRMS). For optimised numerical

simulations, the exact eigenmodes are replaced by simple polynomials for use in Lagrange’s equation. The close agreement

of the lowest natural frequency by both methods for various fixed SRMS configurations, being almost independent over

the range, shows that simple mode shapes can be used to determine transient vibrations induced by large angle slews of the

SRMS and payload system. The use of a tangent frame formulation for each link relative to its revolute joint is the key for

the formulation of the flexible link boundary conditions and is more realistic than the use of arbitrary beam functions by

other authors.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Throughout the last two or more decades a considerable quantity of research has been devoted to the
dynamics and vibration control of multi-link robotic manipulators, subjected to disturbances arising for
example from rotational manoeuvres by torque motors about revolute joints. Of particular interest is the
vibration of flexible space robotic systems, such as the space shuttle remote manipulator system (SRMS) and
the space station mobile remote manipulator system (MRMS). These structures are lightweight and very
flexible, in contrast to stiff industrial robots.

A sample of the relevant literature on the SRMS is given in Refs. [1–12], but most papers give
only little detailed information about the operation of the SRMS or its dynamic characteristics,
with the exception of Refs. [5,9,13], which give a few numerical results. Two of the major concerns
are possible fatigue damage in the high reduction gear trains [1] and residual vibrations following a SRMS
manoeuvre [5,9].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Previous research work [14,15] has analysed single-flexible link robots, taking account of end payload
inertia and mass, shoulder drive or hub inertia and various restraints by springs, but these papers only
consider small point masses as payloads and torsional flexibility only between the hub and the motor rotor [16]
presents an analytical solution for the natural frequencies and mode shapes of a free–free planar beam subject
to arbitrary kinematic and kinetic boundary conditions.

A three-link system has been studied by Kwak and Meirovitch [17] using assumed mode shapes and
allowing for planar rigid body Shuttle motion, but no justification is for the use of the approximate mode
shapes. Wiedemann [18] considers the natural frequencies and mode shapes of an arbitrary structure of
Euler–Bernoulli beams subject to arbitrary kinematic and kinetic boundary conditions and is an extension of
research work carried out in Refs. [19,20]. The latter developed the method that was later generalised in Ref.
[18] for the SRMS, but did not give the mode shape orthogonality conditions or consider numerical accuracy
and optimisation of numerical simulations.
2. Exact analytical solution for SRMS natural frequencies

The SRMS consists basically of two flexible links and a very stiff end effector connected by revolute joints.
All three joints can be unlocked so as to be driven by high reduction ratio gear trains or locked, having joint
flexibility.

Fig. 1 shows that the SRMS is idealised as two flexible beams L1 and L2 with a rigid end effector L3

connected to a rigid payload of mass Mp and moment of inertia Ip. The standard solution to the beam
differential equation yields the mode shape of each beam as

W iðxÞ ¼ Ai sin ðkixÞ þ Bi cosðkixÞ þ Ci sinh ðkixÞ þDi cosh ðkixÞ, (1)

where

k2
i ¼ on

ffiffiffiffiffiffiffi
mbi

EI i

r
; i ¼ 1; 2. (2)

and mbi is the mass per unit length of link i and EIi its flexural stiffness.
Eq. (1) is solved for the two coupled links using the bending moment and shear force boundary conditions

at xi ¼ 0 and Li corresponding to O1, O2 and O3 in Fig. 1. The 2� 4 boundary conditions yield 8 equations,
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Fig. 1. Acceleration components of the SRMS with rigid payload and space shuttle.
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and after collecting terms with respect to Ai, Bi, Ci and Di, the eigenvalue equation becomes

d11 d12 d13 d14 d15 d16 d17 d18

d21 d22 d23 d24 d25 d26 d27 d28

d31 d32 d33 d34 d35 d36 d37 d38

d41 d42 d43 d44 d45 d46 d47 d48

d51 d52 d53 d54 d55 d56 d57 d58

d61 d62 d63 d64 d65 d66 d67 d68

d71 d72 d73 d74 d75 d76 d77 d78

d81 d82 d83 d84 d85 d86 d87 d88

2
666666666666664

3
777777777777775

A1

B1

C1

D1

A2

B2

C2

D2

2
666666666666664

3
777777777777775

¼ 0 (3)

which requires numerical solution of the following determinant for the natural frequencies on

det ½dij � ¼ 0, (4)

where the elements dij are given in Eq. (21). Note that in general dij 6¼dji.
Boundary conditions: It is required to take account of the bending moment and shear force boundary conditions

at joints O1, O2 and O3 due to payload mass and rotary inertia for various cases of one or more joints locked in
Fig. 1. The payload is idealised as a block of known mass and moment of inertia about its centre of mass G which
is at distance a from the end effector. €u and €f are the translational and rotational accelerations of G, and O1, O2,
O3 are revolute joints which can be free or locked with joint stiffnesses li. Dy is the distance of the Shuttle centre of
mass CMS from O1, a1 the acceleration of O2 relative to O1, a21 the acceleration of O3 relative to O2, a32 the
acceleration of G relative to O3 and aS is the acceleration of the Shuttle perpendicular to L1 at O1.

Since the angular rotation Dy1 þW 0
1ð0Þ of Link1 at O1 (x1 ¼ 0) due to a locked joint O1 of torsional

stiffness l1 and to the beam flexure is small, y1 can be taken as constant. Dy1 allows for the modal rotation of
the Shuttle, given by

Dy1 ¼
EI1W 00

1ð0Þ

l1
. (5)

For harmonic motions the transverse and rotational accelerations are, respectively,

€W iðxiÞ ¼ �o2W iðxiÞ (6)

and

€W
0

iðxiÞ ¼ �o2W 0
iðxiÞ, (7)

where W 0
iðxiÞ denotes the slope of link i at xi. The bending moment and shear force boundary conditions of

Link1 at O1 (x1 ¼ 0) for a locked joint are, respectively,

EI1W 00
1ð0Þ ¼ �ISo2ðW 0

1ð0Þ � Dy1Þ � Dy MSo2½W 1ð0Þ cos y1 þ DyðW 0
1ð0Þ � Dy1Þ� (8)

and

EI1W 00
1ð0Þ ¼MSo2½W 1ð0Þ þ DyðW 0

1ð0Þ � Dy1Þ cos y1�, (9)

where MS and IS are the mass and rotary inertia of the Shuttle about its centre of mass.
To obtain the boundary conditions of Link1 at x1 ¼ L1, we calculate the total moment about O2 and the

total force perpendicular to Link1 at O2 due to the payload. From Fig. 1 the total angular acceleration €f
about the payload centre of mass G is

€f ¼ o2 W 0
1ðL1Þ þW 0

2ðL2Þ þ Dy3
� �

, (10)

where Dy3 is the rotation of the end effector and the payload relative to Link2 at O3 due to the joint stiffness
l3, given by

Dy3 ¼
EI2W 00

2ðL2Þ

l3
. (11)
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The total translatory acceleration €u1M of G perpendicular to Link2 is

€u1M ¼ o2½W 1ðL1Þ cos y2 þW 2ðL2Þ þW 0
1ðL1Þ½L2 þ ðL3 þ aÞ cos y3� þ ½W 0

2ðL2Þ þ Dy3�ðL3 þ aÞ cos y3�, (12)

where it is assumed that the angular deflections of the links and the end effector at the joints due the
joint stiffnesses is small, so that the angles y2 and y3 of the undeformed configuration can be taken as
constant.

The bending moment in Link1 at O2 must equal the total moment about O2 due to the various inertias, thus
using Eqs. (10) and (12)

EI1W 00
1ðL1Þ ¼ Ipo2½W 0

1ðL1Þ þW 0
2ðL2Þ þ Dy3� þMpo2½W 2ðL2Þ þW 1ðL1Þ cos y2 þW 0

1ðL1ÞðL2

þ ðL3 þ aÞ cos y3Þ þ ðW 0
2ðL2Þ þ Dy3ÞðL3 þ aÞ cos y3�ðL2 þ ðL3 þ aÞ cos y3Þ

þ

Z L2

0

mb2o2½W 2 þW 1ðL1Þ cos y2 þW 0
1ðL1Þx2�x2 dx2. ð13Þ

The integrals in Eqs. (13) and (14) are the inertia moment of the distributed mass of Link2 about O2.
The shear force of Link1 at O2 is equal to the total force perpendicular to Link1 due to the various masses,

thus if M2 is the mass of Link2, we have

�EI1W 000
1 ðL1Þ ¼ ðMp þM2Þo2W 1ðL1Þ þ

Z L2

0

mb2o2ðW 2 þ x2W 0
1ðL1ÞÞ cos ydx2

þMpo2ðW 0
2ðL2Þ þ Dy3ÞðL3 þ aÞ cosðy2 þ y3Þ

þMpo2½W 2ðL2Þ þW 0
1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þ� cos y2. ð14Þ

The boundary conditions of Link2 at x2 ¼ 0 are

W 2ð0Þ ¼ 0 (15)

and

l2W 0
2ð0Þ ¼ EI2W

00
2ð0Þ (16)

if Joint2 is locked with joint stiffness l2.
The boundary conditions at x2 ¼ L2 are obtained by considering the various inertia forces at O3. The

translatory acceleration €u2M of G perpendicular to the end effector is

€u2M ¼ o2½W 1ðL1Þ cosðy2 þ y3Þ þ ðW 0
2ðL2Þ þ Dy3ÞðL3 þ aÞ�

þ o2½W 2ðL2Þ þW 0
1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þ� cos y3. ð17Þ

Thus using Eqs. (10) and (17), moment equilibrium at O3 gives

EI2W 00
2ðL2Þ ¼ Ipo2½W 0

1ðL1Þ þW 0
2ðL2Þ þ Dy3� þMpo2½W 1ðL1Þ cosðy2 þ y3Þ þ ðW 0

2ðL2Þ þ Dy3ÞðL3 þ aÞ

þ fW 2ðL2Þ þW 0
1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þg cos y3�ðL3 þ aÞ. ð18Þ

The shear force of Link2 at O3 must be equal to all the inertia force components perpendicular to Link2 at
O3, thus

�EI2W
000
2 ðL2Þ ¼Mpo2 W 1ðL1Þ cos y2þ½ W 2ðL2Þ þ ðW

0
2ðL2Þ þ Dy3ÞðL3 þ aÞ cos y3

þW 0
1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þ�. ð19Þ
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Using Eq. (15) to obtain D2 ¼ �B2 and applying the other boundary conditions we collect all terms with
respect to A1, B1, C1, D1, A2, B2, and C2, so that Eq. (3) reduces to the 7� 7 system

d11 d12 d13 d14 d15 d16 d17

d21 d22 d23 d24 d25 d26 d27

d31 d32 d33 d34 d35 d36 d37

d41 d42 d43 d44 d45 d46 d47

d51 d52 d53 d54 d55 d56 d57

d61 d62 d63 d64 d65 d66 d67

d71 d72 d73 d74 d75 d76 d77

2
666666666664

3
777777777775

A1

B1

C1

D1

A2

B2

C2

2
666666666664

3
777777777775
¼ 0. (20)

Neglecting the small integral terms in Eqs. (13) and (14) and using C1 ¼ cos (k1L1), S1 ¼ sin (k1L1),
Ch1 ¼ cosh (k1L1), Sh1 ¼ sinh (k1L1), C2 ¼ cos (k2L2), S2 ¼ sin (k2L2), Ch2 ¼ cosh (k2L2), Sh2 ¼ sinh (k2L2),
the elements dij in Eq. (20) are

d11 ¼ d13 ¼ k1ðIS þ Dy2MSÞo2,

d12 ¼ EI1k2
1 �1þ

ðIS þ Dy2MSÞo2

l1

� �
þ o2 Dy MS cos y1,

d14 ¼ EI1k2
1 1�

ðIS þ Dy2MSÞo2

l1

� �
þ o2 Dy MS cos y1,

d15 ¼ d16 ¼ d17 ¼ 0,

d21 ¼ EI1k3
1 þ o2k1 Dy MS cos y1,

d22 ¼ o2MS 1þ
k2
1 Dy EI1 cos y1

l1

� �
,

d23 ¼ �EI1k
3
1 þ o2k1 Dy MS cos y1,

d24 ¼ o2MS 1�
k2
1 Dy EI1 cos y1

l1

� �
,

d25 ¼ d26 ¼ d27 ¼ 0,

d31 ¼ k1ðIp þMpðL2 þ ðaþ L3Þ cos y3Þ
2
Þo2C1 þ S1ðEI1k2

1 þMpðL2 þ ðaþ L3Þ cos y3Þo2 cos y2Þ,

d32 ¼ C1ðMpo2 cos y2ðL2 þ ðaþ L3Þ cos y3Þ þ EI1k
2
1Þ � o2Ipk1S1 � o2Mpk1ðL2 þ ðaþ L3Þ cos y3Þ

2S1,

d33 ¼ k1ðIp þMpðL2 þ ðaþ L3Þ cos y3Þ
2
Þo2Ch1 � Sh1ðEI1k2

1 �MpðL2 þ ðaþ L3Þ cos y3Þo2 cos y2Þ,

d34 ¼ Ch1ðMpo2 cos y2ðL2 þ ðaþ L3Þ cos y3Þ � EI1k2
1Þ þ o2Ipk1Sh1 þ o2Mpk1ðL2 þ ðaþ L3Þ cos y3Þ

2Sh1,

d35 ¼ o2ðMpðL2 þ ðaþ L3Þ cos y3ÞS2 þ Ipk2C2Þ

þ o2 �
Ipk2

2EI2S2

l3
þ k2ðaþ L3ÞMp cos y3ðL2 þ ðaþ L3Þ cos y3Þ C2 �

EI2k2S2

l3

� � !
,

d36 ¼ o2ðMpðL2 þ ðaþ L3Þ cos y3ÞðC2 � Ch2ÞÞ þ o2 �Ipk2 S2 þ Sh2 þ
EI2k2ðC2 þ Ch2Þ

l3

� �� �
,

� o2 Mpk2 cos y3ðaþ L3ÞðL2 þ ðaþ L3Þ cos y3Þ S2 þ Sh2 þ
EI2k2ðC2 þ Ch2Þ

l3

� �� �
,
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d37 ¼ o2ðMpðL2 þ ðaþ L3Þ cos y3ÞSh2 þ Ipk2Ch2Þ

þ o2 Ipk2
2EI2Sh2

l3
þ k2ðaþ L3ÞMp cos y3ðL2 þ ðaþ L3Þ cos y3Þ Ch2 þ

EI2k2Sh2

l3

� � !
,

d41 ¼ k1C1ð�EI1k
2
1 þMpo2 cos y2ðL2 þ ðaþ L3Þ cos y3ÞÞ þ ðMp þM2Þo2S1,

d42 ¼ o2ðMp þM2ÞC1 þ EI1k
3
1S1 � k1Mpo2 cos y2ðL2 þ ðaþ L3Þ cos y3ÞS1,

d43 ¼ k1Ch1ðEI1k2
1 þMpo2 cos y2ðL2 þ ðaþ L3Þ cos y3ÞÞ þ ðMp þM2Þo2Sh1,

d44 ¼ o2ðMp þM2ÞCh1 þ EI1k3
1Sh1 þ k1Mpo2 cos y2ðL2 þ ðaþ L3Þ cos y3ÞSh1,

d45 ¼
o2

k2l3
ð�k2

2ðaþ L3ÞMp cosðy2 þ y3Þð�l3C2 þ EI2k2S2ÞÞ þ o2 cos y2MpS2,

d46 ¼ o2Mp cos y2ðC2 � Ch2Þ � o2 k2ðaþ L3ÞMp cosðy2 þ y3Þ S2 þ Sh2 þ EI2k2
C2 þ Ch2

l3

� �� �
,

d47 ¼
o2

k2l3
ðk2

2ðaþ L3ÞMp cosðy2 þ y3Þðl3Ch2 þ EI2k2Sh2ÞÞ þ o2 cos y2 MpSh2,

d51 ¼ d52 ¼ d53 ¼ d54 ¼ 0,

d55 ¼ d57 ¼ k2l2,

d56 ¼ 2EI2k
2
2,

d61 ¼ o2ðIpk1C1 þ k1ðaþ L3ÞMpC1 cos y3ðL2 þ ðaþ L3Þ cos y3ÞÞ þ o2ððaþ L3ÞMpC1 cos ðy2 þ y3ÞS1Þ,

d62 ¼ o2ððaþ L3ÞMpC1 cosðy2 þ y3Þ � Ipk1S1Þ � o2k1ðaþ L3ÞMp cos y3ðL2 þ ðaþ L3Þ cos y3ÞS1,

d63 ¼ o2ðIpk1Ch1 þ k1ðaþ L3ÞMpCh1 cos y3ðL2 þ ðaþ L3Þ cos y3ÞÞ þ o2ððaþ L3ÞMpC1 cosðy2 þ y3ÞSh1Þ,

d64 ¼ o2ððaþ L3ÞMpC1 cosðy2 þ y3Þ þ Ipk1Sh1Þ þ o2k1ðaþ L3ÞMp cos y3ðL2 þ ðaþ L3Þ cos y3ÞSh1,

d65 ¼ EI2k
2
2S2 þ o2 ðaþ L3ÞMp cos y3S2 þ Ipk2 C2 � EI2k2

S2

l3

� �� �
þ k2ðaþ L3Þ

2Mpo2 C2 � EI2k2
S2

l3

� �
,

d66 ¼ EI2k2
2ðC2 þ Ch2Þ þ o2ðaþ L3ÞMp cos y3ðC2 � Ch2Þ þ o2Ipk2 S2 þ Sh2 þ EI2k2

C2 þ Ch2

l3

� �

þ k2ðaþ L3Þ
2Mpo2 S2 þ Sh2 þ EI2k2

C2 þ Ch2

l3

� �

d67 ¼ o2 ðaþ L3ÞMp cos y3Sh2 þ Ipk2 Ch2 þ EI2k2
Sh2

l3

� �� �

� EI2k2
2Sh2 þ k2ðaþ L3Þ

2Mpo2 Ch2 þ EI2k2
Sh2

l3

� �
,

d71 ¼Mpo2ðk1C1ðL2 þ ðaþ L3Þ cos y3Þ þ cos y2S1Þ,

d72 ¼Mpo2ð�k1ðL2 þ ðaþ L3Þ cos y3ÞS1 þ cos y2C1Þ,

d73 ¼Mpo2ðk1C1ðL2 þ ðaþ L3Þ cos y3Þ þ cos y2Sh1Þ,

d74 ¼Mpo2ðk1ðL2 þ ðaþ L3Þ cos y3ÞSh1 þ cos y2Ch1Þ,

d75 ¼ �EI2k
3
2C2 þMpo2 S2 þ k2ðaþ L3Þ cos y3 C2 � EI2k2

S2

l3

� �� �
,
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d76 ¼ EI2k
3
2ðS2 � Sh2Þ þMpo2 C2 � Ch2 � k2ðaþ L3Þ cos y3 S2 þ Sh2 þ EI2k2

C2 þ Ch2

l3

� �� �
,

d77 ¼ EI2k
3
2Ch2 þMpo2 Sh2 þ k2ðaþ L3Þ cos y3 Ch2 þ EI2k2

Sh2

l3

� �� �
. ð21Þ

For an unlocked joint, l1 is set to a very small value (zero is not allowed, since it appears in denominators),
and Eq. (8) becomes

�EI1W
00
1ð0Þ ¼ Ig1o2W 0

1ð0Þ. (22)

Then the elements d11, d12, d13 and d14 in Eq. (21) become

d11 ¼ d13 ¼ Ig1k1o2,

d14 ¼ �d12 ¼ EI1k
2
1. ð23Þ

In Eqs. (22) and (23) Ig1 denotes the effective moment of inertia at the output side of the gearbox at O1 due
to the backdriveability of the high ratio gear trains. Similarly, Ig2 is the effective moment of inertia at the
output side of the gearbox at O2. The effective moment of inertia of the end effector joint O3 can be included in
the payload properties but is negligibly small.

For an unlocked Joint2, l2 is set to a very small value, and Eq. (16) becomes

�EI2W
00
2ð0Þ ¼ Ig2o2W 0

2ð0Þ (24)

and the elements d55 and d57 in Eq. (21) are

d55 ¼ d57 ¼ �Ig2k2o2. (25)

Note that deriving the above matrix elements by hand is very tedious and prone to error. For complex
systems it is therefore recommended to use software that can handle symbolic calculations to derive the matrix
elements.
3. Mode shape determination

Using Eq. (4) the computed natural frequency on can be re-inserted into Eqs. (3) or (20) respectively, where
all the matrix elements are now known. Taking for example A1 ¼ 1 and deleting any one of the seven
equations (20) or, in the general case, of the eight equations (3), the remaining equations can be solved for the
remaining parameters B1, C1, etc.

Thus knowing all variables, the parameters A1, B1, y are inserted into Eq. (1), together with the known on,
which finally yields the two mode shapes Wi(x) for each of the two flexible links for the natural frequency on.

It is noted that although the mode shapes are computed for one configuration or moment in time, it will be
shown in Section 6 that for the relevant cases with non-negligible elastic deflections, the mode shapes of the
two flexible links remain essentially the same throughout a manoeuvre and can thus be used also for non-static
dynamic response analyses with changing SRMS configurations, as long as the joint configuration remains the
same.
4. Orthogonality of normal modes

We apply the method presented in Ref. [18] for finding the orthogonality condition of an arbitrary system of
interconnected Euler–Bernoulli beams subject to arbitrary boundary conditions. Thus for the present system
and for the case Joint1 locked and Joint2 locked, using Eqs. (8), (9), (11), (15), (16), (18) and (19), and letting
Wn1(x) and Wn2(x) be the nth mode shape for Beam1 and Beam2, respectively, the orthogonality condition is
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given as

Z L1

0

mb1W n1ðx1ÞW m1ðx1Þdx1 þ

Z L2

0

mb2W n2ðx2ÞW m2ðx2Þdx2 þ ISðW
0
n1ð0ÞW

0
m1ð0Þ � Dy1Þ

þ Dy MS½W n1ð0ÞW m1ð0Þ cos y1 þ DyðW 0
n1ð0ÞW

0
m1ð0Þ � Dy1Þ� þMS½W n1ð0ÞW m1ð0Þ

þ DyðW 0
n1ð0ÞW

0
m1ð0Þ � Dy1Þ cos y1� þ Ip½W

0
n1ðL1ÞW

0
m1ðL1Þ þW 0

n2ðL2ÞW
0
m2ðL2Þ þ Dy3�

þMp½W n2ðL2ÞW m2ðL2Þ þW n1ðL1ÞW m1ðL1Þ cos y2 þW 0
n1ðL1ÞW

0
m1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þ

þW 0
n2ðL2ÞW

0
m2ðL2Þ þ Dy3ÞðL3 þ aÞ cos y3�ðL2 þ ðL3 þ aÞ cos y3Þ

þ

Z L2

0

mb2½W n2ðx2ÞW m2ðx2Þ þW n1ðL1ÞW m1ðL1Þ cos y2 þW 0
n1ðL1ÞW

0
m1ðL1Þx2�x2 dx2

þ ðMp þM2ÞW n1ðL1ÞW m1ðL1Þ þ

Z L2

0

mb2½W n2ðx2ÞW m2ðx2Þ þ x2W 0
n1ðL1ÞW

0
m1ðL1Þ� cos ydx2

þMpðW
0
n2ðL2ÞW

0
m2ðL2Þ þ Dy3ÞðL3 þ aÞ cosðy2 þ y3Þ þMp½W n2ðL2ÞW m2ðL2Þ

þW 0
n1ðL1ÞW

0
m1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þ� cos y2

þ l2W 0
n2ð0ÞW

0
m2ð0Þ þ Ipo2½W 0

n1ðL1ÞW
0
m1ðL1Þ þW 0

n2ðL2ÞW
0
m2ðL2Þ þ Dy3�

þMp½W n1ðL1ÞW m1ðL1Þ cosðy2 þ y3Þ þ ðW 0
n2ðL2ÞW

0
m2ðL2Þ þ Dy3ÞðL3 þ aÞ

fW n2ðL2ÞW m2ðL2Þ þW 0
n1ðL1ÞW

0
m1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þg cos y3�ðL3 þ aÞ

þMp½W n1ðL1ÞW m1ðL1Þ cos y2 þW n2ðL2ÞW m2ðL2Þ þ ðW
0
n2ðL2ÞW

0
m2ðL2Þ þ Dy3ÞðL3 þ aÞ cos y3

þW 0
n1ðL1ÞW

0
m1ðL1ÞðL2 þ ðL3 þ aÞ cos y3Þ� ¼ 0 ð26Þ

for any m 6¼n. As shown in Ref. [18], the orthogonality condition is derived by taking the kinetic energy
expressed by all boundary conditions, independent of its sign, adding up all terms, waiving the on and
replacing W1(x) with the product of two mode shapes Wn1(x) and Wm1(x) (similar for W2(x)).

The result is identical to the generalised mass expression obtained with the first term of Lagrange’s equation

d

dt

qT

q _qiðtÞ

� �
þ

qV

qqiðtÞ
¼ 0, (27)

where T is the system kinetic energy and V the elastic strain energy of the links. Due to this fact, the off-
diagonal elements of the mass matrix M as obtained with the first term of Eq. (27) or as obtained with the left-
hand side of Eq. (26) for m6¼n are an indicator for the precision of the computations and a measure for the
orthogonality of the eigenmodes. Knowing also the system stiffness matrix K obtained with the second term of
Eq. (27), natural frequencies and mode shapes for the system can be computed with

K� o2M
�� �� ¼ 0. (28)
5. Numerical results for natural frequencies and mode shapes

It is seen that the present system can have eight different joint configurations depending on which of the
three joints are locked or free. Due to the large number of possibilities even for fixed joint angle steps of say
301, we only consider the straight RMS perpendicular to the Shuttle axis (y1 ¼ 901, y2 ¼ y3 ¼ 01) for each joint
configuration, which will give the very lowest frequency possible for the case all joints locked. Table 1
compares the fundamental frequency o1 for a free base (Shuttle) to that for a fixed base, which could for
example be true for the case of an attitude controlled Shuttle or a Shuttle docked to a much larger body such
as the International Space Station. The joint configurations are indicated using 1 for a locked joint and 0 for a
free joint. Thus 1-0-1 for example means Joint1 and Joint3 locked and Joint2 unlocked.

The manipulator properties are chosen identical to the SRMS [3], which are given as L1 ¼ 6.37m,
L2 ¼ 7.05m, L3 ¼ 1.88m, mb1 ¼ 3.9 kg/m, mb2 ¼ 3.4 kg/m, EI1 ¼ 3.9786� 106Nm2 and EI2 ¼ 2.334�



ARTICLE IN PRESS

G
O1

O2

O3L1

L2

L3

G

O1

O2

O3L1

L2

L3

Figs. 2 and 3. First mode shape for free and fixed base (joint configuration 0-1-1).
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Table 1

Fundamental frequency o1 (rad/s) of double flexible link system with end effector and unconstrained shuttle

Joint config. Free base Fixed base

0-0-0 30.94 34.04

0-0-1 5.11 6.04

0-1-0 18.37 22.44

1-0-0 10.59 13.33

0-1-1 0.84 0.83

1-0-1 1.05 1.02

1-1-0 0.46 0.40

1-1-1 0.31 0.17
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Fig. 6 and 7. First mode shape for free and fixed base (1-1-0).
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106Nm2. The joints properties are l1 ¼ 106Nm/rad or Ig1 ¼ 1188 kgm2, l2 ¼ 106Nm/rad or Ig1 ¼ 556 kgm2

and l3 ¼ 2.4� 105Nm/rad or l3 ¼ 10�3Nm/rad, respectively, if the actual joint is locked or unlocked.
The payload is chosen to be maximum, thus Mp ¼ 30,000 kg, Ip ¼ 400,000 kgm2 and a ¼ 2m, and the

Shuttle properties are estimated with the available literature as Dy ¼ 14m, MS ¼ 7� 105 kg and
IS ¼ 106 kgm2.

Figs. 2–5 show the mode shapes corresponding to the fundamental natural frequencies in Table 1 for the
joint configurations with at least two joints locked (Figs. 6–9).
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Dynamic simulations carried out in Ref. [20] and using the exact eigenmodes computed with the
determinant method given here show that the results differ significantly from those of other researchers. It is
believed that this difference is due to two facts:
(1)
 usually, a standard multimode expansion using assumed mode shapes is applied to account for
the link flexibility; however, no justification and no proof of convergence is normally given along with the
results;
(2)
 many of the available papers do not account for the exact boundary conditions of the flexible links when
the joint brakes are unlocked; in this case the boundary conditions of the flexible links are essentially a pin
joint due to joint backdriveability, even in the presence of the large rotary inertia due to the effective rotor
inertia at the output side of the high ratio gear train; pinned boundary conditions however make for much
smaller elastic deflections than cantilever beam boundary conditions, as normally assumed.
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Due to these facts it is furthermore assumed that since under normal conditions the elastic deflections are
very small in reality, no active damping system need to be installed on space robotic systems comparable to the

SRMS. This is also in contrast to the results of a number of papers that propose a wide range of active and
passive damping systems for the SRMS.

6. Optimisation of numerical simulations

6.1. Using exact mode shapes

Ref. [20] shows that for dynamic response analyses, only the fundamental mode computed with the above
method has to be taken into account for elastic modeling, covering about 98% or more of the total elastic
deflection in all simulations [19] shows that in order to approximate the exact fundamental mode shape, a
standard multimode expansion with assumed mode shapes as normally used by other researchers would need a
relatively large number of modes to converge to an acceptable level, thus dramatically increasing computation
time.

6.2. Mode shape simplification

For dynamic response analyses, the exact analytical mode shapes expressed by Eq. (1) may be undesirable,
containing complex trigonometric and hyperbolic functions and therefore being unsatisfactory for numerical
simulations of flexible robot systems.

A polynomial approximation of the exact mode shape functions in Eq. (1) can be obtained by a standard
interpolation fit in the form W appðxÞ ¼

PN
n¼1anxn. Prior to any computations however it should be ensured

that the approximate polynomials deviate only with a maximum relative magnitude of say, 10�3 from the
original functions. These mode shapes are then used in Eq. (27).

6.3. Tangent frame formulation

Although the mode shapes are computed for one configuration or moment in time, all formulations of the
boundary conditions of the elastic beams for mode shape and eigenfrequency determination use a tangent
frame. Thus the kinematics of any body within the chain of bodies of the dynamical system are always
formulated relative to the previous body in the chain.

The advantage of using the tangent frame formulation is the following. Since the kinematics of any body are
expressed relative to the previous body, a motion for example of the end effector about O3 changes nothing in
the formulation of all previous bodies in the chain, that is of the whole rest of the system.

Another example is the step from a fixed RMS base to a free base (and vice versa). If the tangent frame
formulation is used to set up the boundary conditions for the flexible links for say, the fixed RMS base case,
only the boundary conditions of Link1 at x1 ¼ 0 has to be modified to allow for a free floating Shuttle,
whereas all the other equations representing the other boundary conditions could remain unchanged.

Since the mode shapes of the two flexible links are always computed for only one moment in time, they
could basically not be used for dynamic simulations with time-varying states. Using the tangent frame
formulation however to set up the equations of motion, simulations can be carried out always using the same
mode shapes for the whole simulation, provided that in reality the mode shapes do not change significantly
with a changing configuration. Table 2 is given for a proof.
Table 2

First non-zero frequency odet of determinant for fixed base SRMS and oLag of Eq. (28) for one fixed set of mode shapes

y2 (deg) 0 30 60 90

odet (rad/s) 1.02 0.98 0.82 0.73

oLag (rad/s) 1.02 0.98 0.82 0.73
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Table 3

First non-zero frequency odet of determinant for Section 5 system and oLag of Eq. (28) for one fixed set of mode shapes

y3 (deg) 0 30 60 90

odet (rad/s) 0.40 0.33 0.27 0.27

oLag (rad/s) 0.40 0.34 0.29 0.27
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Table 2 gives the first non-zero natural frequencies for the data set defined in Section 5 for the SRMS with
fixed base (for which the joint angle y1 is irrelevant) for various joint angles y2, while y3 ¼ 01. These exact
natural frequencies odet are computed with the determinant method outlined before. The odet are compared to
the first non-zero natural frequencies computed with Eq. (28) when for the flexible Link1 and Link2 only the
fundamental mode shape computed with the determinant method for the configuration y2 ¼ y3 ¼ 01 is
inserted and y2 then varied. These latter frequencies computed with Lagrange’s method are denoted oLag.

Table 2 clearly proves the aforementioned benefit of using the tangent frame, since the mode shapes remain
practically constant with changing y2. Thus only one set of mode shapes is sufficient for dynamic analyses with
time varying configurations.

Table 3 makes the same comparison for the configuration, Joint1 and Joint2 locked and Joint3 unlocked.
Again, for Lagrange’s equation the mode shapes of the flexible links were computed for y2 ¼ y3 ¼ 01. Like
Table 2, Table 3 proves the validity of the tangent frame formulation.

One side effect when using the tangent frame formulation must however be noted. Since a modal
decomposition due to time varying configurations is not possible, the system obtained with Lagrange’s
Eq. (27) will have more than only the one natural frequency for which the inserted mode shapes were
computed. Consider the following example. One mode shape for each flexible link for the configuration of all
joints locked is computed with the determinant method and inserted into equations of motion obtained with
the tangent frame formulation. Now if the system has a fixed base, Eq. (27) will give three natural frequencies
and thus three mode shapes due to three degrees of freedom: a rigid body rotation of the end effector, a flexible
motion of Link2 and a flexible motion of Link1. Originally however, the mode shapes belonged to only one
system mode. For the relevant cases of non-negligible elastic deflections, the application of the presented
method shows that the influence of these ‘‘artificial’’ additional mode shapes is irrelevant here.
6.4. Mode shape modification for dynamic simulations

For dynamic simulations using the tangent frame formulation the kinematics of any body within the chain
of bodies of the system are always formulated relative to the previous body in the chain. Therefore a
correction has to be made to the non-rigid mode shapes of the first flexible link due to the following reason.
The functions W1,i(x1) in their present form contain also the rotatory and translatory motion of the Shuttle in
the actual vibration mode. But for further use in dynamic response analyses, the functions must only represent
the deflection of Link1 relative to the Shuttle. Therefore, since all deflections are linearised, the corrected mode
shape for Link1 is obtained by letting W 1;i correctðx1Þ ¼W 1;iðx1Þ �W 1;ið0Þ þ Dy1x1, where Dy1 is the modal
rotation of the Shuttle given by Eq. (5) and is known after applying the aforementioned method of re-inserting
a known on into the respective equation systems to obtain the mode shapes. For an unlocked Joint1, the Dy1
term in the above equation is waived, since in that case Shuttle rotational motions are not transmitted through
Joint1.
7. Limits in numerical accuracy using the determinant method

It is found that due to the great complexity of the determinant equation (4) for the present case (the
determinant expression is about 50 pages long, including hundreds of the trigonometric and hyperbolic
functions and all kinds of products), frequencies in excess of about 5 rad/s may not be accurate, but as has
been shown in Ref. [20], frequencies of that order are associated with negligibly small elastic deflections.



ARTICLE IN PRESS

Table 4

Mass matrix M for double flexible link system with free base (shuttle) and data set of Section 5, using three exact mode shapes

1 10�5 10�3

10�5 1 10�2

10�3 10�2 1
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It is known that the magnitude of the off-diagonal elements in the mass matrix M in Eqs. (27) or (28) or the
left-hand side of Eq. (26) for m 6¼n are an indicator for the numerical accuracy when using exact mode shapes.
Table 4 gives the mass matrixM for the double flexible link system with free base for the data set introduced in
Section 5.

From the above table it can be seen that the numerical accuracy can rapidly decrease with an increasing
number of mode shapes in dynamical simulations. However, only the fundamental mode was found to be
relevant for dynamic response analyses in Ref. [20] when the focus is on the magnitude of elastic deformations.
Also, Ref. [18] shows that it is possible to smooth out the inaccuracies by computing the eigenvectors of the
systems with Eq. (28), so as to make the mode shapes more orthogonal.

For simpler systems than the one proposed here, for example a system as analysed in Ref. [16], the
application of the method developed in Ref. [18] shows that the off-diagonal elements of the mass matrix are
of the order of 10�7, even for 10 and more modes shapes, and this is believed to be a limit in numerical accuray
in general, not only for the proposed method.

8. Summary

This paper gives an exact analytical solution for the natural frequencies and mode shapes of a triply
articulated planar manipulator system with two long flexible links and one short, rigid end effector, similar to
the shuttle remote manipulator system (SRMS). It is an application of Wiedemann [18] and an extension of
Wiedemann and Kirk [20] in that it gives the orthogonality condition of the mode shapes and considers
optimisation of numerical simulations and limits in numerical accuracy when using the proposed method.

The present paper gives numerical results for the exact fundamental natural frequency and mode shape of a
space robotic system similar to the SRMS for various configurations of joints free and fixed and included
angles y1, y2 and y3. It is shown how numerical dynamic simulations can be optimised in terms of computation
time and accuracy of the results.

The limits in numerical accuracy when using the proposed method to find eigenmodes of flexible robotic
systems are addressed, and referring to results of Wiedemann and Kirk [20] these are shown to be
unproblematic since the fundamental mode covers about 98% of the total elastic deflection excited by
manoeuvers of the SRMS.

The paper applies the exact boundary conditions when formulating the links equations of motion, thus
revealing that when the joints are unlocked, the links are essentially pinned, and not clamped as assumed in
other papers. Thus with essentially pinned flexible links, the elastic deflections are small compared to those
computed in other papers when assuming clamped flexible links. Since NASA has, to the authors’ knowledge,
not introduced active damping control of the SRMS so far, it is believed that the results given in this paper and
in Ref. [20] are therefore closer to reality than those of other publications.
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